Loctite® structural adhesives are engineered to meet a wide range of industrial bonding and assembly requirements. They are available in several formulations including:

- Two-part acrylics
- One- and two-part epoxies
- Polyurethanes
- Two-step acrylics
- NVH

Our structural adhesives are designed to provide superior bond strength, long life and dependability on a variety of substrates and applications including:

1. **Metal Bonding** – optimized to meet the demands of today’s total lower cost, high strength and lighter weight metal fabricating requirements.
2. **Plastic and Composite Bonding** – for the toughest, most durable bond strength on composites and plastics, including difficult to bond polyolefins.
3. **Multiple Surface Bonding** – for excellent bond strength when joining dissimilar materials, substrates and surface types.
4. **Magnet Bonding** – for the fastest, most durable bonds on ferrite, alnico and neodymium iron boron permanent magnets.
5. **NVH - Noise Vibration & Harshness** – highly engineered, custom solutions to help achieve noise and vibration reduction levels in applications for Ag-Con specialty vehicles and appliances.

Loctite® structural adhesives are available in easy-to-use packages for hand-held, manual and semi-automated applications, including cartridges, syringes, soft-squeeze bottles and dual cartridges for two-part formulations. Loctite® structural adhesives are also offered in larger packages such as 5- or 55-gallon pails for high volume dispensing and automated assembly operations.

All Loctite® structural adhesives are easily applied with Loctite® dispensing equipment. Configurations include manual or pneumatic, portable or stationary, small or large package systems and pressure-time or volumetric dispense systems.

For reliable structural adhesives, choose Loctite®, a name synonymous with the highest quality, superior technical support and exceptional value for over 60 years.

TABLE OF CONTENTS

Selecting a Structural Adhesive

- Structural Bonding Overview 2
- Adhesive Joint Design 4
- Design Considerations...................... 6
- Technology Considerations 7

Chemistries & Products

- Two-Part Acrylics 8
- Two-Part Acrylic Adhesives................. 10
- Epoxies 12
- Epoxy Adhesives......................... 14
- Polyurethanes......................... 16
- Polyurethane Adhesives 18
- NVH (Noise, Vibration & Harshness) 20
- Two-Step Acrylics 24
- Two-Step Acrylic Adhesives 26

Equipment

- Dispensing Equipment 28
LOCTITE® STRUCTURAL ADHESIVES ARE AS STRONG AS OVERLAP WELDS, 2X STRONGER THAN BOLTS AND EASIER ON THE BOTTOM LINE.

STRENGTH

- **Loctite® Adhesive**
- **Overlap Weld**
- **1/4” Nut & Bolt**
- **Pop Rivets**
- **Double-sided Tape**

COST

- $1.44
- $2.52
- $2.60
- $3.85
- $2.20

Shear Stress (lbf)

Before

Previous process. Note the proliferation of rivet heads.

After

With Loctite® Structural Adhesive process. Note the smooth finish.

Before

Vibration response test for truck utility door with welded vertical steel hat section. Red/yellow indicates high levels of vibration.

After

Test results for truck utility door using Henkel 27006 expandable material instead of steel hat section. Blue/green indicates low levels of vibration.
WHY USE A HENKEL ADHESIVE FOR STRUCTURAL BONDING?

The Henkel range of structural bonding products offers a wide choice of solutions to meet the different requirements and conditions that apply to industrial design and construction.

BONDING BASICS

Adhesive bonding is a process in which two similar or dissimilar materials are solidly and permanently assembled using an adhesive.

To achieve the optimal bonding result, the following prerequisites must be met:

- Compatibility of the adhesive with the materials to be bonded
- Compatibility of the adhesive with the specified requirements
- Correct processing of the adhesive

ADVANTAGES OF BONDING COMPARED TO CONVENTIONAL JOINING METHODS

More uniform stress distribution over the entire bond face:
This has a very positive effect on the static and dynamic strength achieved. Where welding and riveting result in localized stress peaks, adhesive bonding achieves uniform distribution and absorption of stress loads.

No change in surface and texture of the joined materials:
Welding temperatures may change the texture and, therefore, the mechanical properties of materials. In addition, welding, riveting and fastening all affect the visual appearance of the parts.

Weight saving: Adhesives are particularly popular for lightweight constructions, where thin-walled parts (wall thickness < 0.5 mm) must be joined.

Sealed joints: Adhesives also act as sealants, preventing loss of pressure or liquids, blocking the penetration of condensation water and protecting against corrosion.

Joining dissimilar materials and reducing the risk of corrosion: The adhesive forms an insulating film to prevent contact corrosion when different types of metals are joined. It also acts as electrical and thermal insulator.

CHOOSING THE RIGHT HENKEL STRUCTURAL BONDING ADHESIVE

The following key points should be observed for the design of bonded joints:

- The surfaces to be joined should be as large as possible for maximum load transmission capability
- Forces acting on the joint should be distributed across the entire bond line
AVAILABLE TECHNOLOGIES

EPOXIES
- Rigid bonding
- Room temperature or heat cure
- Capability to fill large gaps
- Very high strength
- Very good chemical resistance

ACRYLICS
- Rigid to slightly flexible bonding
- Room temperature cure
- Very high strength
- Good environmental resistance
- Very high impact strength
- Good fatigue resistance

POLYURETHANES
- Slightly flexible bonding
- Room temperature cure
- Capability to fill large gaps
- High strength
- Good environmental resistance

NOTE: For flexible bonding options please refer to our Elastomeric Adhesives and Sealants Brochure (LT-6556) or our Adhesives Sourcebook (LT-3355).
ADHESIVE JOINT DESIGN

INTRODUCTION
In this section, the terms and concepts related to joint design are divided into three categories which include:

• Types of Joints
• Joint Stress Distribution
• Design Guidelines

Before looking at different types of joints, a few terms need to be explained:

Joint: A joint is the location where an adhesive joins two substrates.

Joint Geometry: Joint geometry refers to the general shape of an adhesive bond. Is the shape of the bond long and narrow, short and wide, thick or thin?

TYPES OF JOINTS
The specific types of joints which will be examined in this section include:

• Lap/Overlap
• Scarf
• Offset
• Strap/Double Strap
• Butt
• Cylindrical

LAP/OVERLAP JOINT: A lap joint, also called an overlap joint, is formed by placing one substrate partially over another substrate.

OFFSET JOINT: The offset joint is very similar to the lap joint.

BUTT JOINT: A butt joint is formed by bonding two objects end to end.

SCARF JOINT: A scarf joint is an angular butt joint. Cutting the joint at an angle increases the surface area.

STRAP JOINT (SINGLE OR DOUBLE): A strap joint is a combination overlap joint with a butt joint.

CYLINDRICAL JOINT: A cylindrical joint uses a butt joint to join two cylindrical objects.
JOINT STRESS DISTRIBUTION
joint stress distribution is the location of stresses within a bond.

Stress: Usually expressed as Newtons per square meter (N/m²), which is equivalent to a pascal (Pa) in the English system, stress is normally expressed in pounds per square inch (psi).

TYPES OF STRESSES
There are several types of stresses commonly found in adhesive bonds which include:

- Shear
- Peel
- Tensile
- Cleavage
- Compressive

SHEAR STRESS: A shear stress results in two surfaces sliding over one another.

TENSION STRESS DISTRIBUTION: When a bond experiences a tensile stress, the joint stress distribution is illustrated as a straight line. The stress is evenly distributed across the entire bond. Tensile stress also tends to elongate an object.

PEEL STRESS: A peel stress occurs when a flexible substrate is being lifted or peeled from the other substrate. **NOTE:** The stress is concentrated at one end.

CLEAVAGE STRESS: A cleavage stress occurs when rigid substrates are being opened at one end. **NOTE:** The stress is concentrated at one end.

COMPRESSION STRESS DISTRIBUTION: When a bond experiences a compressive stress, the joint stress distribution is illustrated as a straight line. The stress is evenly distributed across the entire bond.
DESIGN CONSIDERATIONS

Engineers must have a good understanding of how stress is distributed across a joint which is under an applied force. There are several design guidelines which should be considered when designing an adhesive joint.

MAXIMIZE SHEAR/MINIMIZE PEEL AND CLEAVAGE

Note from the stress distribution curve for cleavage and peel, that these bonds do not resist stress very well. The stress is located at one end of the bond line. Whereas, in the case of shear, both ends of the bond resist the stress.

MAXIMIZE COMPRESSION/MINIMIZE TENSILE

Note from the stress distribution curve for compression and tension, that stress was uniformly distributed across the bond. In most adhesive films, the compressive strength is greater than the tensile strength. An adhesive joint which is feeling a compressive force is less likely to fail than a joint undergoing tension.

JOINT WIDTH VS. OVERLAP

Note from the shear stress distribution curve, that the ends of the bond receives a greater amount of stress than does the middle of the bond. If the width of the bond is increased, stress will be reduced at each end and the overall result is a stronger joint.

In this same overlap joint, if the overlapping length is greatly increased, there is little, if any, change in the bond strength. The contribution of the ends is not increased. The geometry of the ends has not changed, thus their contribution to the bond strength has not changed.

As a general rule, increase the joint width rather than the overlap area (“wider is better”).

JOINT AREA – WIDTH VS. OVERLAP

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side View</td>
<td>Side View</td>
</tr>
<tr>
<td>Bond Area</td>
<td>1 sq. in.</td>
</tr>
<tr>
<td>Force</td>
<td>Shear</td>
</tr>
<tr>
<td>1.0"</td>
<td>0.5"</td>
</tr>
</tbody>
</table>
Technology Considerations

<table>
<thead>
<tr>
<th>Performance Considerations</th>
<th>Adhesive Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits</td>
<td>Epoxy</td>
</tr>
<tr>
<td></td>
<td>Wide range of formulations</td>
</tr>
<tr>
<td>Limitations</td>
<td>Mixing required</td>
</tr>
</tbody>
</table>

Temperature Resistance

<table>
<thead>
<tr>
<th></th>
<th>Epoxy</th>
<th>Urethane</th>
<th>2-Part Acrylics</th>
<th>2-Step Acrylics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical for the category</td>
<td>-65ºF to 180ºF (-54ºC to 82ºC)</td>
<td>-65ºF to 250ºF (-54ºC to 121ºC)</td>
<td>-65ºF to 250ºF (-54ºC to 121ºC)</td>
<td>-65ºF to 300ºF (-54ºC to 149ºC)</td>
</tr>
<tr>
<td>Highest rated product</td>
<td>400ºF (204ºC)</td>
<td>300ºF (149ºC)</td>
<td>250ºF (121ºC)</td>
<td>400ºF (204ºC)</td>
</tr>
</tbody>
</table>

Environmental Resistance

<table>
<thead>
<tr>
<th>Solvent Type</th>
<th>Epoxy</th>
<th>Urethane</th>
<th>2-Part Acrylics</th>
<th>2-Step Acrylics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polar Solvents (Ex.: H2O, Ethylene Glycol, Isopropyl Alcohol [IPA], Acetone)</td>
<td>Very Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Nonpolar Solvents (Ex.: Motor Oil, Toluene, Gasoline, ATF)</td>
<td>Excellent</td>
<td>Good</td>
<td>Very Good</td>
<td>Very Good</td>
</tr>
</tbody>
</table>

Adhesion to Substrates

<table>
<thead>
<tr>
<th>Substrate Type</th>
<th>Epoxy</th>
<th>Urethane</th>
<th>2-Part Acrylics</th>
<th>2-Step Acrylics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td>Excellent</td>
<td>Good</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Plastics</td>
<td>Fair</td>
<td>Very Good</td>
<td>Excellent</td>
<td>Fair</td>
</tr>
<tr>
<td>Glass</td>
<td>Excellent</td>
<td>Good</td>
<td>Good</td>
<td>Excellent</td>
</tr>
<tr>
<td>Rubber</td>
<td>Fair</td>
<td>Good</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Wood</td>
<td>Very Good</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>

Process Considerations

<table>
<thead>
<tr>
<th>Process Considerations</th>
<th>Adhesive Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Components</td>
<td>Epoxy</td>
</tr>
<tr>
<td></td>
<td>1 or 2</td>
</tr>
<tr>
<td>Cure Temperature</td>
<td>Room temperature or heat cure</td>
</tr>
<tr>
<td>Fixture Time</td>
<td>20 minutes</td>
</tr>
<tr>
<td></td>
<td>3 to 5 minutes</td>
</tr>
<tr>
<td>Full Cure Time</td>
<td>12 to 24 hours</td>
</tr>
<tr>
<td>Gap Fill</td>
<td>0.004 to 0.006</td>
</tr>
<tr>
<td>Dispensing/Mixing Equipment Required</td>
<td>YES</td>
</tr>
</tbody>
</table>

Please Note: This chart should not be used to specify products without specific testing. It is recommended that you conduct on-part testing to ensure product performance before specifying any adhesive.
TWO-PART ACRYLICS

ADVANTAGES
- High cure through depth
- Room temperature cure
- High peel and impact strength
- Good environmental resistance
- Bonds to moderately contaminated surfaces
- Cure can be accelerated with heat

CONSIDERATIONS
- Slow fixture times (5 to 30 minutes)
- Waste associated with static mix process
- May have strong odor

GENERAL DESCRIPTION
Two-part acrylic adhesives consist of a resin and an activator both of which are normally high-viscosity liquids typically in the range of 5,000 to 100,000 cP. While the activator is chemically similar to that of a two-step acrylic, it is delivered as a high viscosity liquid that is normally similar in viscosity to the resin. The two components are mixed just prior to dispensing at mix ratios ranging from 1:1 and 10:1 by volume. By mixing the activator and resin, two-part acrylics have much larger cure through depths than two-step acrylics that only have the activator applied to the surface.

To maintain the ratio of the resin and activator equipment is required. For small to moderate volume applications, the adhesive is packaged in a dual cartridge that sets the ratio. For high volume applications, meter mix dispense equipment is used.

The resin and activator are mixed by passing them through a static mix tip which allows the material to be dispensed as a homogenous one-part material. Since the mixed adhesive is curing in the mix tip, there will be trade off between the open time and the fixture time. Faster curing products will require that mix tips be changed after shorter idle times.

Two-part acrylics can also be accelerated with heat, but care must be taken when determining the cure temperature.

PROCESS NOTES
Properly prime the mix tip by dispensing a small amount before attaching the mix tip (also called “bumping”) to ensure both sides are flowing then dispensing several grams after attaching the tip to prime the mix tip before creating production parts.

Audit to ensure proper mixing. Many two-part acrylics are color coded to allow for visual inspection of the mixing. For example, a blue resin and yellow activator would result in a green product. There should not be pockets of unmixed (i.e. yellow or blue) product that can be visually observed.

Use equipment designed for two-part acrylics. Two-part acrylics are very reactive systems that may cure when contacting active metals such as steel, copper or brass. When dispensing from a meter-mix dispense system, two-part acrylics must be dispensed from inactive systems such as stainless steel. Care should be taken not to replace fitting during maintenance with active metals.

Evaluate peak exotherm for large volume applications. Two-part acrylics cure very rapidly via an exothermic reaction that releases heat. When curing large volumes, the heat can be sufficient to warp plastic parts or degrade the adhesive.
TWO-PART ACRYLIC ADHESIVES

Your Application

- Specially formulated to provide tough, long-lasting bonds to most surfaces, including steel, galvanized steel, aluminum, sheet metal, stainless steel, plastics and composites
- Capable of reducing or replacing the need for threaded fasteners, welds or rivets, resulting in a lower cost assembly

Loctite® Solution

<table>
<thead>
<tr>
<th>Color</th>
<th>Viscosity (cP)</th>
<th>Mix Ratio</th>
<th>Work Time† (min.)</th>
<th>Shear Strength1 (psi)</th>
<th>Impact Strength5 (J)</th>
<th>Peel Strength1 (pli)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H8000™</td>
<td>190,000</td>
<td>10:1</td>
<td>30</td>
<td>3,140†</td>
<td>23</td>
<td>45</td>
</tr>
<tr>
<td>H4500™</td>
<td>45,000</td>
<td>10:1</td>
<td>10:1</td>
<td>3,100</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H8600™</td>
<td>86,000</td>
<td>2:1</td>
<td>25</td>
<td>3,355</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H8500™</td>
<td>60,000</td>
<td>10:1</td>
<td>25</td>
<td>3,380</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H8100™</td>
<td>185,000</td>
<td>10:1</td>
<td>15</td>
<td>3,090†</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H8110™</td>
<td>200,000</td>
<td>10:1</td>
<td>10:1</td>
<td>2,475†</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Product Description

Loctite® H8000™ Structural Adhesive
Tough Metal Bonder
Exhibits excellent peel strength on multiple substrates, especially aluminum.

Loctite® H4500™ Structural Adhesive
Fast Work Time
High strength structural adhesive for metals. Fixtures in 15 minutes. With color mix indication.

Loctite® H8600™ Structural Adhesive
Galvanized Steel Bonder
Excellent shear strength on steel and aluminum. Especially designed for severe environments.

Loctite® H8500™ Structural Adhesive
Ultra-Tough Steel Bonder
Exhibits excellent strength on aluminum. Contains 30 mil spacer beads to prevent excessive squeeze-out of adhesive due to over-clamping.

Loctite® H8100™ Structural Adhesive
Aluminum Bonder
Exhibits excellent strength on aluminum.

Loctite® H8110™ Structural Adhesive
Ultra-Fast Aluminum Bonder
Aluminum bonder fixtures in 5 minutes.

* Made-to-order item.
† Working time = maximum time before assembly of parts to ensure proper wetting.
1 Steel.
2 High density polyethylene.
3 Aluminum.
4 Galvanized steel.
5 Grit-blasted mild steel.
6 Polyethylene.
<table>
<thead>
<tr>
<th>Clear Bondline</th>
<th>Fast Work Time</th>
<th>Longer Work Time</th>
<th>High Toughness</th>
<th>High Strength</th>
<th>Fast Work Time</th>
<th>Longer Work Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>H5004™</td>
<td>H3000™</td>
<td>H3101™</td>
<td>H4800™</td>
<td>H3000™</td>
<td>3035™</td>
<td>3034™</td>
</tr>
<tr>
<td>Transparent</td>
<td>Yellow</td>
<td>Cream</td>
<td>Light Yellow</td>
<td>Cream</td>
<td>Off-White</td>
<td>Translucent</td>
</tr>
<tr>
<td>18,000</td>
<td>110,000</td>
<td>75,000</td>
<td>50,000</td>
<td>45,000</td>
<td>14,000</td>
<td>63,000</td>
</tr>
<tr>
<td>1:1</td>
<td>1:1</td>
<td>1:1</td>
<td>1:1</td>
<td>1:1</td>
<td>1:1</td>
<td>10:1</td>
</tr>
<tr>
<td>1.5</td>
<td>5</td>
<td>41</td>
<td>30</td>
<td>5</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>3,100</td>
<td>3,350</td>
<td>2,510</td>
<td>3,000</td>
<td>4,150</td>
<td>1,658</td>
<td>1,160</td>
</tr>
<tr>
<td>N/A</td>
<td>14</td>
<td>15</td>
<td>27</td>
<td>21</td>
<td>5.8</td>
<td>14</td>
</tr>
<tr>
<td>23</td>
<td>40</td>
<td>45</td>
<td>83</td>
<td>45</td>
<td>45</td>
<td>30</td>
</tr>
</tbody>
</table>

Loctite® H5004™ Structural Adhesive Clear Bondline
A fast-setting, toughened adhesive for metals and plastics that creates a virtually transparent bondline.

<table>
<thead>
<tr>
<th>P/N</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>83020</td>
<td>50 ml dual cartridge</td>
</tr>
<tr>
<td>83019</td>
<td>40 lb. pail, adhesive</td>
</tr>
<tr>
<td>83024*</td>
<td>400 ml dual cartridge</td>
</tr>
<tr>
<td>83022*</td>
<td>40 lb. pail, activator</td>
</tr>
</tbody>
</table>

Loctite® H3300™ Structural Adhesive Fast Fixture
A non-sag, fast-fixturing structural adhesive for bonding a variety of substrates.

<table>
<thead>
<tr>
<th>P/N</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>83007</td>
<td>50 ml dual cartridge</td>
</tr>
<tr>
<td>83006</td>
<td>400 ml dual cartridge</td>
</tr>
</tbody>
</table>

Loctite® H3101™ Structural Adhesive Extended Work Life
A medium viscosity structural adhesive ideal for bonding a variety of substrates. NSF/ANSI 61 Certified.

<table>
<thead>
<tr>
<th>P/N</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>996615</td>
<td>50 ml dual cartridge</td>
</tr>
<tr>
<td>83045</td>
<td>400 ml dual cartridge</td>
</tr>
</tbody>
</table>

Loctite® H4800™ Structural Adhesive Toughened
Excellent peel and impact resistance. Provides high bond strengths on composites.

<table>
<thead>
<tr>
<th>P/N</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>83001</td>
<td>50 ml dual cartridge</td>
</tr>
<tr>
<td>83000</td>
<td>400 ml dual cartridge</td>
</tr>
</tbody>
</table>

Loctite® H3000™ Structural Adhesive High Strength
A low viscosity adhesive which exhibits high bond strength on a variety of substrates.

<table>
<thead>
<tr>
<th>P/N</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>83001</td>
<td>50 ml dual cartridge</td>
</tr>
<tr>
<td>83000</td>
<td>400 ml dual cartridge</td>
</tr>
</tbody>
</table>

Loctite® 3035™ Structural Adhesive Fast Fixturing
Extended open time allows for adjustment of parts. Excellent peel and shear strength on polyethylene plastics.

<table>
<thead>
<tr>
<th>P/N</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1677288</td>
<td>50 ml dual cartridge</td>
</tr>
</tbody>
</table>

Loctite® 3034™ Structural Adhesive Toughened
A fast-fixturing acrylic adhesive designed to bond low-energy plastic substrates without any surface preparation.

<table>
<thead>
<tr>
<th>P/N</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>960973</td>
<td>490 ml dual cartridge</td>
</tr>
</tbody>
</table>
EPOXIES

ADVANTAGES

• Wide variety of formulations available
• High adhesion to many substrates
• Good toughness
• Cure can be accelerated with heat
• Excellent depth of cure
• Superior environmental resistance

CONSIDERATIONS

• Two-part systems require mixing
• One-part systems require heat cure
• Long cure and fixture times

GENERAL DESCRIPTION

Epoxy adhesives are supplied as one- and two-part systems with viscosities that range from a few thousand centipoise to thixotropic pastes. Upon cure, epoxies form tough, rigid thermoset polymers with high adhesion to a wide variety of substrates and superior environmental resistance. A major advantage of epoxies is that there are a wide variety of commercially available resins, hardeners and fillers for epoxies that allows the performance characteristics of epoxies to be tailored to the needs of almost any application.

When using a one-part heat-cure system, the resin and a latent hardener are supplied already mixed and when stored typically need to be refrigerated or frozen. By heating the system, the latent hardener is activated causing cure to initiate. The epoxy will normally start to cure rapidly at temperatures of 212°F to 257°F (100°C to 125°C) and cure times of 30 to 60 minutes are typical. Heat curing also generally improves bond strengths, thermal resistance and chemical resistance.

When using a two-part system, the resin and hardener are packaged separately and are mixed just prior to use. This allows more active hardeners to be used so that the two-part epoxies will rapidly cure at ambient conditions.

Two-part systems are normally mixed by passing them through a static mix tip. This allows the two-part material to be dispensed as a single homogenous liquid where it exits the mix tip.

Since the mixed adhesive is curing in the mix tip, the adhesive’s viscosity and performance changes during idle times and the mix tip must be changed after the idle time exceeds the adhesive’s open time. This creates a trade off between fixture time and open time. Faster curing products will require that mix tips be changed after shorter idle times.

To maintain the ratio of the resin and activator, equipment is required. For small to moderate volume applications, the adhesive is normally packaged in a dual cartridge that sets the ratio. For high volume applications, meter mix dispense equipment is recommended.

PROCESS NOTES

Properly prime the mix tip by dispensing a small amount before attaching the mix tip (also called “bumping”) to ensure both sides are flowing, then dispense several grams after attaching the tip to prime the mix tip before creating production parts.

Significant exotherms can occur for large volume applications. The curing reaction of the epoxy can release a great deal of heat (exotherm) and can result in a significant temperature rise in the adhesive.

Ensure that meter mix systems are on-ratio and air free. To maintain consistent performance when using a meter mix dispense system, it is critical that the equipment is at the required mix ratio. This should be audited periodically with QC tests. Air in the equipment is a frequent cause of the equipment becoming off-ratio. Care should be taken not to introduce air in the equipment when changing packages.

Induction curing typically offers the fastest heat cures. Induction heats ferrous components much faster than convection or infrared ovens.
Epoxy Adhesives

Your Application

- Bond a wide variety of materials, such as metal, ceramic, and plastic
- Available in a variety of formulations and performance capabilities, including fast cure, superior moisture resistance, ease of dispense, high toughness, and a resistance to a wide range of chemicals

Loctite® Solution

Do you need a one-part or two-part epoxy?

Two-Part

Do you need the product to fixture in less than 15 minutes at room temperature?

Yes

Clear

Moisture Resistant

Flexible

Non-Sag

Explosion Proof

Non-Corrosive

No

Potting

Product Description

<table>
<thead>
<tr>
<th>Color</th>
<th>Viscosity (cP)</th>
<th>Mix Ratio</th>
<th>Work Life (minutes)</th>
<th>Fixture Time (minutes)</th>
<th>Room Temperature Cure Time (hours)</th>
<th>Shear Strength(^1) (psi)</th>
<th>Temperature Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>25,000</td>
<td>1:1</td>
<td>5</td>
<td>15</td>
<td>24</td>
<td>3,360</td>
<td>200°F (93°C)</td>
</tr>
<tr>
<td>Clear</td>
<td>2,500</td>
<td>1:1</td>
<td>5</td>
<td>15</td>
<td>24</td>
<td>1,430</td>
<td>180°F (80°C)</td>
</tr>
<tr>
<td>Translucent</td>
<td>100,000</td>
<td>1:1</td>
<td>3</td>
<td>10</td>
<td>24</td>
<td>1,600</td>
<td>180°F (82°C)</td>
</tr>
<tr>
<td>Clear</td>
<td>10,000</td>
<td>2:1</td>
<td>30</td>
<td>>180</td>
<td>N/A</td>
<td>3,100</td>
<td>250°F (121°C)</td>
</tr>
<tr>
<td>Grey</td>
<td>24,000</td>
<td>2:1</td>
<td>40</td>
<td>>180</td>
<td>180</td>
<td>3,000(^2)</td>
<td>250°F (121°C)</td>
</tr>
<tr>
<td>Black</td>
<td>8,000</td>
<td>1:1</td>
<td>60</td>
<td>>180</td>
<td>180</td>
<td>2,630</td>
<td>250°F (121°C)</td>
</tr>
</tbody>
</table>

\(1\) Structural Adhesives and NVH Selector Guide

\(2\) Made-to-order item.

\(^*\) Grit blasted steel.

\(^*\) Aluminum.
Loctite® E-20HP™
Hysol® Epoxy
Adhesive
High Performance
A high strength epoxy with a 20-minute work life. Off-white, toughened, high peel, high shear.

P/N Package Size
29314 50 ml dual cartridge
29315 200 ml dual cartridge
29316 400 ml dual cartridge
29317 5 gal. pail, resin
29318 5 gal. pail, hardener

Loctite® E-60HP™
Hysol® Epoxy
Adhesive
A high strength epoxy with a 60-minute work life. Off-white, high-peel, high-shear.

P/N Package Size
29319 50 ml dual cartridge
29321 400 ml dual cartridge

Loctite® E-90FL™
Hysol® Epoxy
Adhesive
Flexible
A grey, impact-resistant, toughened epoxy with a 90-minute work life.

P/N Package Size
29309 50 ml dual cartridge
29311 400 ml dual cartridge

Loctite® E-30UT™
Hysol® Epoxy
Adhesive
Ultra-Tough
An epoxy that provides exceptional fracture toughness characteristics for the most demanding structural bonding requirements.

P/N Package Size
1078234 50 ml dual cartridge
1078235 400 ml dual cartridge

Terokal® 5089™
Structural Adhesive
High Performance
A toughened heat curable epoxy offering high-shear strength and extremely good peel and impact resistance. Can be spot-welded through and is compatible with most paint-bake processes.

P/N Package Size
116275 300 ml cartridge
116276 5 gal. pail
116297 55 gal. drum

Loctite® E-214HP™
Hysol® Epoxy
Adhesive
General-Purpose/Heat Cure
A one-component, acid-free, heat cure epoxy. Light grey, temperature resistant, high strength, non-sag, Noncorrosive to sensitive parts.

P/N Package Size
29339 30 ml cartridge
29340 300 ml cartridge

High Toughness

Short Work Life
Medium Work Life
Long Work Life
Flexible
Ultra-Toughened
High Toughness
General-Purpose

Off-White
Amber
Opaque Grey
Purple
Purple
Yellow

30,000
30,000
40,000
65,000
Paste
Paste

2:1
2:1
1:1
2:1
N/A
N/A

20
60
120
90
30
N/A
N/A

120
240
180
>180
180
N/A
N/A

24
24
24
24
24
20 min. @ 350°F (177°C)
2 @ 302°F (150°C)

3,270
4,320
4,300
810
4,200
2,900
4,820

250°F (121°C)
250°F (121°C)
250°F (121°C)
250°F (121°C)
350°F (177°C)
300°F (149°C)
POLYURETHANES

ADVANTAGES
• Extremely tough
• Good resistance to solvents
• High cohesive strength
• Good impact resistance
• Good abrasion resistance

CONSIDERATIONS
• Mixing required for two-part polyurethanes
• Primer may be needed for adhesion to some substrates
• Limited high temperature use

GENERAL DESCRIPTION
Polyurethane adhesives are supplied as one- and two-part systems which range in viscosity from self-leveling liquids to non-slumping pastes. They cure to form thermoset polymers with good solvent and chemical resistance. They are extremely versatile and can range in cured form from extremely soft elastomers to rigid, extremely hard plastics. Polyurethanes offer a good blend of cohesive strength and flexibility that makes them very tough, durable adhesives. They bond well to most unconditioned substrates, but may require the use of solvent-based primers to achieve high-bond strengths. They offer good toughness at low temperatures, but typically degrade in strength after long-term exposure over 302°F (150°C).

Since the cure of one-part, moisture-curing polyurethanes is dependent on moisture diffusing through the polymer, the maximum depth of cure that can be achieved in a reasonable time is limited at approximately 0.375" (9.5 mm). Two-part systems, on the other hand, offer unlimited depth of cure.

Two-part system are normally mixed by passing them through a static mix tip. This allows the two-part material to be dispersed as a single homogenous liquid where it exits the mix tip. Since the mixed adhesive is curing in the mix tip, the adhesive’s viscosity and performance changes during idle times and the mix tip must be changed after the idle time exceeds the adhesive’s open time. This creates a trade off between fixture time and open time. Faster curing products will require that mix tips be changed after shorter idle times.

To maintain the ratio of the resin and activator, equipment is required. For small to moderate volume applications, the adhesive is packaged in a dual cartridge that sets the ratio. For high volume applications, meter mix dispense equipment is used.

PROCESS NOTES
Properly prime the mix tip by dispensing a small amount before attaching the mix tip (also called “bumping”) to ensure both sides are flowing, then dispense several grams after attaching the tip to prime the mix tip before creating production parts.

Audit to ensure proper mixing. When setting up a new process, the mix tip should be evaluated in application-representative conditions, including planned downtimes to ensure proper mixing. This should be audited periodically.

Significant exotherms can occur for large volume applications. The curing reaction of the epoxy can release a great deal of heat (exotherm) and can result in a significant temperature rise in the adhesive.

Protect the adhesive from moisture. Polyurethanes will absorb moisture from the ambient atmosphere, which may cause premature gelling or bubbling of the adhesive. As a result, bulk system must be designed with dyers to prevent this.
Loctite® UK 1351 B25™ Urethane Adhesive

Composite Bonder

A highly toughened, GL-approved, two-part urethane for composites bonding. Non-sag with excellent fatigue and environmental resistance.

- **P/N Package Size**
 - 1667557 400 ml cartridge

Loctite® UK 1366 B10™ Urethane Adhesive

Metal Bonder

A highly flexible, medium fixture structural bonder that has good adhesion to metals and plastics. Excellent environmental resistance and impact strength.

- **P/N Package Size**
 - 1668032 415 ml cartridge

WHAT ARE YOU BONDING?

- **Composites**
- **Metal**

Your Application

- Bond a wide variety of materials, including most metals, plastics and composites
- Exhibit superior moisture and humidity resistance, as well as good toughness and flexibility

Loctite® Solution

- **NEW** UK 1351 B25™
- **NEW** UK 1366 B10™

Product Description

<table>
<thead>
<tr>
<th></th>
<th>Loctite® UK 1351 B25™</th>
<th>Loctite® UK 1366 B10™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Viscosity (cP)</td>
<td>29,000</td>
<td>34,000</td>
</tr>
<tr>
<td>Mix Ratio</td>
<td>2:1</td>
<td>4:1</td>
</tr>
<tr>
<td>Work Life (minutes)</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>Fixture Time (minutes)</td>
<td>75</td>
<td>35</td>
</tr>
<tr>
<td>Cure Time (hours)</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Shear Strength** (psi)</td>
<td>2,360</td>
<td>1,550</td>
</tr>
</tbody>
</table>

* Made-to-order item.
** Steel.
† Grit-blasted steel.
<table>
<thead>
<tr>
<th>Plastic Bonder</th>
<th>General-Purpose</th>
<th>Flame Resistance Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loctite® U-09FL™ Hysol® Urethane Adhesive
A two-part, high performance urethane adhesive for plastic bonding with a 10-minute work life. Clear, impact resistant, high peel.</td>
<td>Loctite® U-05FL™ Hysol® Urethane Adhesive
A high performance urethane adhesive for general-purpose metal bonding with a 5-minute work life. Off-white, highly flexible, impact and moisture resistant, high peel, high shear.</td>
<td>Loctite® 3364™ Hysol® Urethane Adhesive
Rigid two-component urethane designed for flame resistance and fast cure. Extremely fast cure. UL™ 94V-0 rating.</td>
</tr>
<tr>
<td>P/N</td>
<td>Package Size</td>
<td>P/N</td>
</tr>
<tr>
<td>29460</td>
<td>50 ml dual cartridge</td>
<td>29460</td>
</tr>
<tr>
<td>29462*</td>
<td>400 ml dual cartridge</td>
<td>29348</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Color</th>
<th>Viscosity (cP)</th>
<th>Mix Ratio</th>
<th>Work Life (minutes)</th>
<th>Fixture Time (minutes)</th>
<th>Cure Time (hours)</th>
<th>Shear Strength** (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>29,000</td>
<td>2:1</td>
<td>50</td>
<td>75</td>
<td>72</td>
<td>2,360</td>
</tr>
<tr>
<td>Off-White</td>
<td>100,000</td>
<td>1:2</td>
<td>30</td>
<td>35</td>
<td>72</td>
<td>1,550</td>
</tr>
<tr>
<td>Black</td>
<td>5,000</td>
<td>1:2</td>
<td>24</td>
<td>30</td>
<td>24</td>
<td>1,460</td>
</tr>
</tbody>
</table>

Shear Strength: 2,800
Henkel is a leading source for NVH (noise, vibration and harshness), acoustic, structural and seam-sealing solutions for the Ag-Con, specialty vehicle and appliance markets. We provide advanced technologies and comprehensive design and engineering support to enable you to meet performance requirements for cabs, bodies and other applications. NVH products are designed to solve problems associated with panel and structural reinforcement, noise, vibration, water leakage and fume infiltration.

ACOUSTIC TECHNOLOGIES

NVH products are used to reduce or damp noise levels resulting in quieter vehicles and machines. These products also help manage the stress and strain energies of assemblies, allowing them to absorb shock without damage. There are two basic types of NVH reduction strategies:

1. **Damping**: Sheet metal damping materials reduce unwanted structural vibration, which helps reduce vehicle noise levels.

2. **Expanding**: Acoustic barriers help block out road noise, wind and other sounds coming from outside the cab, resulting in a more pleasant driving experience.

Applications, where NVH products can be found, include body panels, engine compartments, roof panels, doors, floor pan baffles, underbody/drum coatings and roll-over protective structures.

STRUCTURAL BONDING

Structural bonding is a process in which thermoset materials are joined to substrates to form tough, high-strength, corrosion-resistant bonds that impact resistance, add stiffness, reduce weight and enhance durability. This product group encompasses two types of materials: structural adhesives and structural panel stiffeners.

These products are typically used in fabrication and assembly plants prior to paint shop operations and are compatible with metal pretreatments and e-coat chemistries. These materials also adhere to oily substrates.

There are two types of structural bonding adhesives:

1. One-component, heat-cured
2. Two-component, room temperature-cured

SEAM SEALING

Seam sealing helps prevent metal corrosion (rust bleed-thru) and the ingress of water, wind and fumes that can damage or shorten the life of metal or interior components. Improper sealing of seams can also pose a health risk to operators working inside vehicle cabs (e.g., exposure to fuel and exhaust fumes).

Henkel offers three basic types of seam sealants that can be used at virtually any stage of production, depending upon process system and workflow requirements:

1. Weld-seam sealing products applied prior to metal pretreatment
2. Post-metal treatment/pre-paint sealing products
3. After-paint sealing products applied after the component or vehicle cab has been painted

Seam sealers are either moisture-curable or thermosetting, and are available in several forms including easy-to-use hand-held cartridges, pails, drums and totes for pumpable dispensing of large volumes, or as preformed tapes or die-cuts for precise, dimensional seam-sealing requirements.
PRODUCT OVERVIEW
Our product line consists of pumpables and expandables, preformed parts, rigid panels and tapes, cavity sealing foams and custom die-cut shapes. Product applications include:

- Structural and semi-structural adhesives and panel stiffeners
 - Structural tapes and patches
 - Stiffening patches
 - Expandable structural parts

- Damping and expanding
 - High damping foam
 - Liquid-applied sound damping (LASD)
 - Expandable pillar filler parts
 - Baffles
 - Constrained butyl patches

- Surface preparation
 - Surface and component cleaning
 - Metal pretreatment sealers
 - Paintable sealers
 - Functional coatings

SPECIALTY PRODUCTS
Specialty products include solutions for difficult or challenging applications requiring a more complex engineered approach. Specialty products typically consist of two main types of materials:

1. **Flowables**: These are thermoplastic or thermosetting materials used to bridge metal gaps or seal difficult areas.
2. **Elastomeric Adhesives and Sealants**: This family of products exhibits high resiliency while maintaining high tensile strength and good adhesion to many substrates. They are isocyanate and solvent-free, and begin to cure when in contact with ambient moisture.
ACOUSTICS LAB AND ENGINEERING SERVICES

Henkel's technical support team offers engineering, design, prototyping and testing services to help evaluate just about any NVH, structural or seam-sealing application.

Our acoustics lab, located in Madison Heights, Michigan, is equipped with state-of-the-art instrumentation and validation equipment for conducting tests and performing analysis of noise reduction variables on everything from discrete components and sub-assemblies to full-size vehicles.

Evaluation services include Finite Element Analysis (FEA), CAE/CAD design and FEA modal analysis. With these and other analytical tools, we can help you:

- Address problems involving vehicle stiffness, mass distribution, panel reinforcement, NVH and energy efficiency
- Find ways to add structural integrity to vehicles without increasing weight
- Explore options for improving overall quality, durability and useful life

Utilizing a complete portfolio of technologies, materials and product variables, Henkel engineering can help you find the solution that's right for your application.
TWO-STEP ACRYLICS

ADVANTAGES
- Fast fixture speed
- Room temperature cure
- No mixing required
- High peel and impact strength
- Good environmental resistance
- Bonds to lightly contaminated surfaces
- Cure can be accelerated with heat

CONSIDERATIONS
- Limited cure through depth (0.040”)
- Activator may contain solvents
- Activator requires controlled dispensing process
- Adhesive may have strong odor

GENERAL DESCRIPTION
Two-step acrylic adhesives consist of a resin and an activator. The resin component is a solvent-free, high-viscosity liquid typically in the range of 10,000 to 100,000 cP. The activator is a low viscosity liquid catalyst typically in the range of 2 to 50 cP. The activator is available either as a solvent dispersion or pure (also called “solventless”).

When the resin and activator contact each other the resin begins to cure very rapidly fixturing in 15 seconds to several minutes depending on the specific adhesive used and gap being cured through.

In some cases the resin can also be cured with light or heat. Light cure can be used to fully cure resin that light can reach, fillets for example. While the fixture time depends on many factors, 15 to 30 seconds is typical.

A typical heat cure cycle is 10 to 20 minutes at 300°F (149°C). Heat curing normally offers higher bond strengths, improved thermal resistance, better chemical resistance and achieves complete cure faster. Heat cure is sometimes also used to eliminate any residual odor of the acrylic adhesive from the cured assembly.

PROCESS NOTES
Use the activator specified for the adhesive in the datasheet. All activators are not compatible with all adhesives.

Do not over apply. When using activators, do not over apply them. The target quantity is normally 4 to 8 mg/in². Solventless activators generally require automated dispensing via a rotospray or atomized spray valve.

Allow time for the carrier solvent to evaporate. If using a solvent-based activator, such as Loctite® 7387™ or 7649™, allow sufficient time for the carrier solvent to evaporate after applying the activator before mating the two assemblies. This is normally 30 to 60 seconds, but can be longer based on the specific activator used.

Do not apply the activator and adhesive to the same part, unless they are assembled immediately after dispensing. The adhesive will start curing in as little as 5 to 15 seconds.

Do not apply the activator to porous surfaces, such as a ferrite magnet. The porous surface may absorb the activator taking it away from the adhesive joint.

Be sure to assemble the parts before the activator open time expires. After that time, the adhesive may not cure properly. Activator open times range widely from an hour to 30 days, so refer to the technical data sheet to determine the open time for the activator you are using.

Protect activators from air exposure. Depending upon their specific chemistry, some activators may oxidize readily upon exposure to air. Always close containers after use. Use a nitrogen blanket if necessary to lessen air contact.
MAGNET BONDING

Loctite® Structural Adhesives for magnet bonding combine the benefits of fast process speeds with tough, durable, environmentally resistant bond strengths, making them ideal for bonding ferrite, alnico and neodymium iron boron permanent magnets used in electric motors, small engines, speakers, transformers and other devices. Magnets assembled with adhesives provide a wealth of benefits, including:

- Ability to use lower cost components
- Decreased inventory cost
- Easier to automate
- Will not chip magnets
- Prevent vibrational noise
- Prevent corrosion
- Acid-free
- Higher impact strength
- Higher temperature resistance
TWO-STEP ACRYLIC ADHESIVES

Loctite® 392™ Structural Adhesive
- Fast Fixture/Toughened
- Single component, dual-cure acrylic. Provides fast-fixture speed and tough, reliable bonds.

P/N Package Size
39250 50 ml tube
39275 300 ml cartridge
39280 1 liter bottle

Loctite® 334™ Structural Adhesive
- High Temperature
- Single component, dual-cure acrylic. Forms tough, flexible bonds on gaps up to 0.02 in. Resists temperatures up to 350°F.

P/N Package Size
33403 25 ml syringe
33470 300 ml cartridge

Loctite® A-671™ Structural Adhesive
- Gap Filling
- Two-component external mix acrylic requires no static mixing or activators. Excellent humidity resistance and gap-filling capability. Fast fixturing.

P/N Package Size
1256489 40 ml dual cartridge
1256488 4.00 ml kit (adhesive/activator)
1256501 19 liter pail, adhesive
1255709 19 liter pail, activator

Loctite® 392™ Structural Adhesive
- Fast Fixture/Toughened
- Single component, dual-cure acrylic. Provides fast-fixture speed and tough, reliable bonds.

P/N Package Size
39250 50 ml tube
39275 300 ml cartridge
39280 1 liter bottle

Loctite® 334™ Structural Adhesive
- High Temperature
- Single component, dual-cure acrylic. Forms tough, flexible bonds on gaps up to 0.02 in. Resists temperatures up to 350°F.

P/N Package Size
33403 25 ml syringe
33470 300 ml cartridge

Loctite® 331™ Structural Adhesive
- Ultra-Fast Fixture
- Toughened, activator-cure acrylic. Acid-free, noncorrosive to sensitive parts. Fixtures in 20 seconds and develops full strength in 30 minutes. Excellent high temperature resistance. Ideal for bonding close-fitting metals and magnets.

P/N Package Size
1057673 25 ml syringe
1057674 1 liter pail

Loctite® 332™ Structural Adhesive
- High Toughness
- Single component, dual-cure acrylic. Provides fast-fixture speed and tough, reliable bonds.

P/N Package Size
33250 50 ml tube
33275 300 ml cartridge

Loctite® 330™ Structural Adhesive
- General-Purpose

P/N Package Size
33050 50 ml tube
33075 300 ml cartridge

Product Description

* Made-to-order item.
1 Steel.
Loctite® 331™ Structural Adhesive
- **Ultra-Fast Fixture**
- **Toughened, activator-cure acrylic. Acid-free, noncorrosive to sensitive parts.**
- Fixtures in 20 seconds and develops full strength in 30 minutes. Excellent high temperature resistance. Ideal for bonding close-fitting metals and magnets.

<table>
<thead>
<tr>
<th>P/N</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1057673</td>
<td>25 ml syringe</td>
</tr>
<tr>
<td>1057674</td>
<td>1 liter bottle</td>
</tr>
</tbody>
</table>

Loctite® 326™ Structural Adhesive
- **Fast Fixture**

<table>
<thead>
<tr>
<th>P/N</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>32629</td>
<td>50 ml bottle</td>
</tr>
<tr>
<td>32685</td>
<td>1 liter bottle</td>
</tr>
</tbody>
</table>

Loctite® 332™ Structural Adhesive
- **High Temperature**
- An activator-cured, no-mix adhesive that provides high temperature capability with thermal durability up to 400°F (204°C).

<table>
<thead>
<tr>
<th>P/N</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>32201</td>
<td>25 ml syringe</td>
</tr>
<tr>
<td>33275</td>
<td>300 ml cartridge</td>
</tr>
<tr>
<td>33290</td>
<td>1 liter bottle</td>
</tr>
</tbody>
</table>

Loctite® 330™ Depend® Adhesive
- **General Purpose**
- A general-purpose, high viscosity adhesive for a wide range of materials, including metal, wood, ferrite, ceramic and plastic.

<table>
<thead>
<tr>
<th>P/N</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>20253</td>
<td>5 ml kit</td>
</tr>
<tr>
<td>20251</td>
<td>25 ml kit</td>
</tr>
<tr>
<td>20252</td>
<td>250 ml kit</td>
</tr>
<tr>
<td>33059</td>
<td>250 ml tube</td>
</tr>
<tr>
<td>33064</td>
<td>300 ml cartridge</td>
</tr>
<tr>
<td>33081</td>
<td>1 liter bottle</td>
</tr>
</tbody>
</table>

ACCELERATORS, ACTIVATORS & PRIMERS
Henkel has a complete line of Loctite® surface preparation accelerators, activators and primers, as well as a complete line of general-purpose Loctite® branded cleaners and degreasers, and specialized products to ensure the maximum performance of Loctite® adhesives and sealants.

Loctite® activators – including 7387™, 7075™, and 7649™ – are specially engineered curing agents for structural adhesives.

Note:
- **Light Amber**
- **Cream**
- **Amber**
- **Pale Yellow**

Viscosity (cP):
- **326™:** 17,000
- **331™:** 20,000
- **332™:** 100,000
- **330™:** 67,500

Gap Fill (in.):
- **326™:** 0.04
- **331™:** 0.10
- **332™:** 0.025
- **330™:** 0.02

Fixture Time:
- **326™:** 20 sec.
- **331™:** 30 to 60 sec.
- **332™:** 60 sec.
- **330™:** 90 sec.

Cure Time (hours):
- **326™:** 24
- **331™:** 24
- **332™:** 24
- **330™:** 24

Shear Strength (psi):
- **326™:** 3,100
- **331™:** 2,500
- **332™:** 2,500
- **330™:** 2,800

Temperature Resistance:
- **326™:** 350ºF (177ºC)
- **331™:** 311°F (155°C)
- **332™:** 250ºF (121ºC)
- **330™:** 350ºF (177ºC)

Dispensing Equipment

Recommended Loctite® Applicators

<table>
<thead>
<tr>
<th>Adhesive Package Type/Size</th>
<th>Handheld Applicators</th>
<th>Dispenser Item Number</th>
<th>Equipment Type</th>
<th>Viscosity Range</th>
<th>Mix Ratios</th>
<th>Recommended Mix Nozzle</th>
<th>Item Number</th>
<th>PCS/PK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Part Dispensing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 mL “A” Dual Cartridge</td>
<td>98472 Manual</td>
<td>98455</td>
<td>Low to High</td>
<td>1:1, 1:2, 2:1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>97042 Pneumatic</td>
<td>98455</td>
<td>Low to High</td>
<td>1:1, 1:2, 2:1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>50 mL “B” Dual Cartridge</td>
<td>98472 Manual</td>
<td>1573149</td>
<td>Low to High</td>
<td>1:1, 1:2, 2:1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>97042 Pneumatic</td>
<td>1573149</td>
<td>Low to High</td>
<td>1:1, 1:2, 2:1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>50 mL “S” Dual Cartridge</td>
<td>1034026 Manual</td>
<td>1034575</td>
<td>Low to High</td>
<td>10:1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1493310 Pneumatic</td>
<td>1034575</td>
<td>Low to High</td>
<td>10:1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>400 mL “C” Dual Cartridge</td>
<td>983438 Manual</td>
<td>98457</td>
<td>High to Paste</td>
<td>1:1, 2:1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>983439 Pneumatic</td>
<td>98457</td>
<td>High to Paste</td>
<td>1:1, 2:1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>400 mL “F” Dual Cartridge</td>
<td>983438 Manual</td>
<td>1573138</td>
<td>High to Paste</td>
<td>1:1, 2:1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>984211 Conversion Kit</td>
<td>98459</td>
<td>High to Paste</td>
<td>4:1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>400 mL “F” Dual Cartridge</td>
<td>983439 Pneumatic</td>
<td>1573138</td>
<td>High to Paste</td>
<td>1:1, 2:1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>984210 Conversion Kit</td>
<td>98459</td>
<td>High to Paste</td>
<td>4:1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>490 mL “F” Dual Cartridge</td>
<td>985246 Manual</td>
<td>1084092</td>
<td>High to Paste</td>
<td>10:1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>985249 Pneumatic</td>
<td>1084092</td>
<td>High to Paste</td>
<td>10:1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

*For additional applicator options please refer to the Equipment Sourcebook, LT-3669.
RECOMMENDED STATIC MIX NOZZLES

<table>
<thead>
<tr>
<th>LOCTITE® PRODUCT</th>
<th>ITEM NUMBER</th>
<th>PACKAGE QUANTITY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIX NOZZLES FOR 50 ML DUAL (A STYLE) CARTRIDGES</td>
<td>98622</td>
<td>10</td>
<td>50 ml Mix Nozzle, Slip-Luer, 5.9” overall length, 0.250” inner diameter, 20 elements; 1:1, 2:1 and 4:1 mix ratios.</td>
</tr>
<tr>
<td></td>
<td>983509</td>
<td>2,000</td>
<td>Lowest Cost 50 ml Nozzle</td>
</tr>
<tr>
<td></td>
<td>98623</td>
<td>10</td>
<td>50 ml Mix Nozzle, Stepped Tip-Luer, 5.9” overall length, 0.250” inner diameter, 20 elements; 1:1, 2:1 and 4:1 mix ratios.</td>
</tr>
<tr>
<td></td>
<td>98364</td>
<td>2,000</td>
<td>Lowest Cost 50 ml Nozzle</td>
</tr>
<tr>
<td></td>
<td>98454</td>
<td>10</td>
<td>50 ml Mix Nozzle, Luer Tip, 6.0” overall length, 6.35 mm inner diameter, 21 elements; 1:1, 2:1, 4:1 mix ratios.</td>
</tr>
<tr>
<td></td>
<td>98455</td>
<td>2,500</td>
<td>50 ml Mix Nozzle, Stepped Tip, 6.0” overall length, 6.35 mm inner diameter, 21 elements; 1:1, 2:1, 4:1 mix ratios.</td>
</tr>
<tr>
<td>MIX NOZZLES FOR 50 ML DUAL (B AND S STYLE) CARTRIDGES</td>
<td>1573144</td>
<td>10</td>
<td>50 ml Mix Nozzle, Stepped Tip, 5.2” overall length, 6.5 mm inner diameter, 16 elements; 1:1, 2:1 mix ratios – B Cartridges.</td>
</tr>
<tr>
<td></td>
<td>1573143</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1573148</td>
<td>10</td>
<td>50 ml Mix Nozzle, Stepped Tip, 6.2” overall length, 6.5 mm inner diameter, 20 elements; 1:1, 2:1 mix ratios – B Cartridges.</td>
</tr>
<tr>
<td></td>
<td>1573147</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1034575</td>
<td>10</td>
<td>50 ml Mix Nozzle, Stepped Tip, 6.2” Overall Length, 6.5 mm inner diameter, 20 elements; 4:1, 10:1 mix ratio – B & S Cartridges.</td>
</tr>
<tr>
<td>MIX NOZZLES FOR 200 ML & 400 ML DUAL (C STYLE) CARTRIDGES</td>
<td>98474</td>
<td>10</td>
<td>200/400 ml Square Mix Nozzle, Stepped Tip, 5.1” overall length, 7.5 mm inner dimension, 24 elements; 1:1, 2:1 mix ratios.</td>
</tr>
<tr>
<td></td>
<td>98653</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>98456</td>
<td>10</td>
<td>200/400 ml Mix Nozzle, Stepped Tip, 7.3” overall length, 6.3 mm inner diameter, 24 elements; 1:1, 2:1 mix ratios.</td>
</tr>
<tr>
<td></td>
<td>1033262</td>
<td>2,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>98457</td>
<td>10</td>
<td>200/400 ml Mix Nozzle, Stepped Tip, 8.8” overall length, 8 mm inner diameter, 24 elements; 1:1, 2:1 mix ratios.</td>
</tr>
<tr>
<td></td>
<td>98464</td>
<td>1,500</td>
<td></td>
</tr>
<tr>
<td>MIX NOZZLES FOR 200 ML & 400 ML DUAL (F STYLE) CARTRIDGES</td>
<td>1573138</td>
<td>10</td>
<td>200/400 ml Mix Nozzle, Stepped Tip, 9.2” overall length, 8.0 mm inner diameter, 24 elements; 1:1, 2:1 mix ratios – F Cartridges.</td>
</tr>
<tr>
<td></td>
<td>1573136</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1084255</td>
<td>10</td>
<td>200/400 ml 4:1 and 490 ml 10:1 Mix Nozzle, 9.2” overall length, 8 mm inner diameter, Stepped Tip, 24 elements – F Cartridges.</td>
</tr>
<tr>
<td></td>
<td>1076341</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1084092</td>
<td>10</td>
<td>200/400-F ml Cartridge Mix Nozzle, 11.2” overall length, 10 mm inner diameter, Stepped Tip, 24 elements; 4:1, 10:1 mix ratios – F Cartridges.</td>
</tr>
<tr>
<td></td>
<td>1084093</td>
<td>900</td>
<td></td>
</tr>
</tbody>
</table>

* For additional mix nozzle options please refer to the Equipment Sourcebook, LT-3669.